"12" Problem:
What does 12 look like? Explain your thinking.

- 0 0 0 0 0 0 0 0 0 0 0 0
- □ □ □ □ □ □ □ □ □ □ □ □
- counting tally
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13
- number line
- 2 + 2 + 2 + 2 + 2 + 2 = 12
- 5 + 2 = 12
- 10 + 2 = 12
- 8 + 3 + 4 = 8 + 5 + 2
- 8 + 2 + 5 = 10 + 5
- 15 = 15
- 3 + 4 + 8 = 3 + 2 + 4 + 1 + 5
- 5 + 5 + 5 = 15
- 15 = 15
- 3 + 4 + 8 = 3 + 2 + 4 + 1 + 5

How many equal groups?

DURING (Working on It)
- 15 to 20 minutes
- Understanding the problem – Teacher asks, “What information from the problem are we using to make a plan to solve it? Explain.” Teacher records in a list below the problem, the information that students identify.
- Students solve the problem on chart paper (landscape) with markers (visible for whole class discussion) in pairs or in small groups.
- Teacher circulates to record different student solutions, in addition to the ones the teacher anticipated.

Butterfly Problem A:
Three butterflies landed on a bush. Then, 4 more butterflies landed. Later, 8 more butterflies joined them on the bush.

How many butterflies are on the bush altogether? Show your work.

What information will we use to solve this problem?
- 3 butterflies
- 4 more butterflies
- 8 more butterflies
- How many total butterflies?
- Show your work - calculations, labelled diagrams

Note: Mathematical annotations include mathematical vocabulary, symbols, elaborations of mathematical details from solutions, labels describing the method/strategy, and questions to further thinking. All annotations are records of students’ mathematical discussion.
Highlights/Summary:

Addition Strategies -
- counting (by 1s, counting on from the first number, counting on from the larger number),
- joining or combining quantities (addition) by regrouping to make 5s and 10s,
- regrouping to make equal groups

Multiplication as equal size groups

<table>
<thead>
<tr>
<th>Size of Group</th>
<th>Number of Groups</th>
<th>(Product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 + 5 + 5</td>
<td>3 x 5</td>
<td>15</td>
</tr>
<tr>
<td>(3 + 3 + 3 + 3)</td>
<td></td>
<td>3 x 5 = 15</td>
</tr>
</tbody>
</table>

Equivalent Number Expressions

- $5 + 5 + 5 = 5 \times 3$
- $15 = 5 + 5 + 5$
- $5 \times 3 = 15$

AFTER (Highlights/Summary)

- 5 minutes
- Teacher and students revisit the student solutions for key ideas, strategies, and models of representation that are related to the lesson learning goal.
- Teacher lists key ideas, strategies, and models of representation separately, so the students can see how the mathematical details from their solutions relate explicitly to the lesson learning goal.

AFTER (Practice)

- 5 to 10 minutes
- Teacher chooses 2 or 3 problems, similar to the lesson problem for students to solve in pairs as a scaffold and individually.
- Problems could vary by number (choice, size), problem contexts, or what is unknown or needs to be solved
- Students are asked to solve these problems using a strategy different from the one they used for the lesson problem.

Butterfly Problem B:
Six butterflies landed on a bush. Then, 8 more butterflies landed. Later, 16 more butterflies joined them on the bush.

How many butterflies are on the bush altogether?

Solution 1

$6 + 16 = 10 + 10 + 10$

$10 + 10 + 10 = 30$

$30 = 6 + 8 + 16$

Solution 2

$2 \times 15 = 30$

Note: A classroom board is longer proportionally than these 2 pages. Due to the space constraints on these pages, the mathematical annotations are recorded above the solutions with arrows, rather than on and around the solutions.