GAP CLOSING

Number Sense

Junior / Intermediate Student Book
Module 1

Representing Fractions

Diagnostic ... 5

One Half ... 10

Proper Fractions as Parts of a Whole 13

Proper Fractions as Parts of Measures 17

Proper Fractions as Parts of a Set 23

Improper Fractions as Parts of Wholes 27

Improper Fractions as Parts of Sets 31

Templates

 Fraction Circles (1) ... 36
 Fraction Circles (2) ... 37
 Fraction Circles (3) ... 38
1. In each box, circle the pictures that show $\frac{1}{2}$.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>b)</td>
<td>c)</td>
</tr>
<tr>
<td>d)</td>
<td>e)</td>
<td>f)</td>
</tr>
<tr>
<td>g)</td>
<td>h)</td>
<td>i)</td>
</tr>
<tr>
<td>j)</td>
<td>k)</td>
<td>l)</td>
</tr>
</tbody>
</table>
2. In each box, circle the pictures that show $\frac{2}{3}$ (either shaded or white).

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td>b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td>d)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td></td>
<td>f)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g)</td>
<td></td>
<td>h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i)</td>
<td></td>
<td>j)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Draw a picture to show each.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\frac{1}{2})</td>
<td></td>
</tr>
<tr>
<td>b) (\frac{3}{4})</td>
<td></td>
</tr>
<tr>
<td>c) (\frac{2}{5})</td>
<td></td>
</tr>
<tr>
<td>d) (\frac{4}{4})</td>
<td></td>
</tr>
<tr>
<td>e) (\frac{3}{2})</td>
<td></td>
</tr>
<tr>
<td>f) (\frac{8}{3})</td>
<td></td>
</tr>
</tbody>
</table>
4. The grey shows the whole.

In column 3, circle the fraction of the whole the black shape represents.

<table>
<thead>
<tr>
<th>Whole</th>
<th>Fraction picture</th>
<th>Fraction symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Draw pictures of cookies in boxes and loose cookies to show each of these.
 Each box holds 6 cookies.

a) \(1 \frac{1}{2}\) boxes of cookies

b) \(2 \frac{1}{6}\) boxes of cookies

c) \(\frac{11}{6}\) boxes of cookies

d) \(\frac{5}{2}\) boxes of cookies
One Half

Learning Goal
• recognizing and representing half of a whole in many ways.

Open Question

\(\frac{1}{2} \) is a fraction we use to tell how much each person gets if 2 people share a whole amount fairly.

We read this as one half.

Show \(\frac{1}{2} \) as many ways as you can.

You might use:
• red and blue tiles
• pattern blocks
• a string
• the circle cutout
• cups and sand
• fraction circles
• linking cubes
Think Sheet

\[\frac{1}{2} \] is 1 person’s share if 2 people share fairly. We say one half.

All of these pictures show \[\frac{1}{2} \].

\[\frac{1}{2} \] is the shaded or full part. It is also the unshaded or empty part.

1. Circle the one that does not show \[\frac{1}{2} \].

2. Tanya folded the ribbon like this.

Is the front part of the ribbon \[\frac{1}{2} \] half of the whole ribbon? Why or why not?
3. a) What does the denominator 2 in $\frac{1}{2}$ tell you?

b) What does the numerator 1 in $\frac{1}{2}$ tell you?

4. Divide each of the three wholes to show $\frac{1}{2}$ three different ways.
 a)
 b)
Proper Fractions as Parts of a Whole

Learning Goal

- representing fractions 1 or less using an area as a whole.

Open Question

Each fraction represents a part of a rectangle. The rectangle is the whole.

Draw and shade in rectangles to show the fractions.

You do not have to use the same size whole each time.

\[\frac{2}{3} \]

\[\frac{5}{6} \]

\[\frac{3}{4} \]

\[\frac{4}{5} \]

\[\frac{9}{10} \]

- How are the pictures alike?

- How are the pictures different?

- What do the similarities and differences have to do with the numerators and denominators of the fractions?
A fraction describes a part of a whole.
The **numerator** (top) tells how many parts you are talking about.
The **denominator** (bottom) tells how many equal parts there are.

\[
\begin{array}{c}
\text{4} & \text{numerator} \\
\text{5} & \text{denominator}
\end{array}
\]

\[
\begin{array}{c}
\text{2 \ blue} & \text{1 \ white} \\
\text{There are 3 equal parts: 2 blue, 1 white}
\end{array}
\]

\[
\begin{array}{c}
\text{4 \ blue} & \text{0 \ white} \\
\text{There are 4 equal parts: 4 blue, 0 white}
\end{array}
\]

1. Name the fraction shaded.

 a)
 b)
 c)
 d)
 e)
 f)

\[
\begin{array}{c}
\text{\textcolor{blue}{\color{black}{\text{1}}} \ \text{blue}} & \text{\textcolor{white}{\color{black}{\text{1}}} \ \text{white}} \\
\text{There are 3 equal parts: 2 blue, 1 white}
\end{array}
\]

\[
\begin{array}{c}
\text{\textcolor{blue}{\color{black}{\text{4}}} \ \text{blue}} & \text{\textcolor{white}{\color{black}{\text{0}}} \ \text{white}} \\
\text{There are 4 equal parts: 4 blue, 0 white}
\end{array}
\]
2. Shade in the pictures to show each fraction in the middle column. In the last column, write the unshaded fraction that the picture shows.

<table>
<thead>
<tr>
<th>Fraction to show</th>
<th>Picture of the fraction</th>
<th>Other fraction shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\frac{2}{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) $\frac{5}{8}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) $\frac{3}{5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) $\frac{3}{4}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Someone says that the coloured part is not $\frac{1}{4}$ since the pieces are not equal. Someone else says it is.

What do you think? Why?
4. Use grid paper or square tiles that touch.
 Model each fraction twice.
 Use different size wholes each time.
 a) $\frac{3}{5}$ b) $\frac{2}{8}$ c) $\frac{7}{10}$ d) $\frac{1}{6}$ e) $\frac{2}{12}$

5. Show a fraction for each situation. Write the fraction.
 a) There are 6 equal parts.

 b) There are 2 blue parts and 3 green parts.

 c) There are 2 parts coloured.

 d) The numerator and denominator are both less than 5.
Proper Fractions as Parts of Measures

Learning Goal

• representing fractions 1 or less using a volume, length or capacity as a whole.

Open Question

This cup is \(\frac{1}{2} \) full.

You can tell it is \(\frac{1}{2} \) since:

• the shape is just as wide at the bottom as at the top and the water goes to half the height

and because

• if you poured exactly the same amount of water into the cup as is already there, the water would fill the cup.

There are 4 equal lengths and 3 of them are shaded in.

The shaded in parts of the line and the shaded in parts of the tower are \(\frac{3}{4} \) of the whole line or tower.

Draw lines or use linking cubes to show each fraction.

\[
\begin{align*}
\frac{1}{3} & \quad \frac{2}{5} & \quad \frac{2}{8} & \quad \frac{2}{10}
\end{align*}
\]

How are these fractions alike?

How are they different?
Think Sheet

A fraction can describe part of a length or part of the amount in a container.

The **numerator** (top) tells how many of the equal parts you want (or use).

The **denominator** (bottom) tells how many equal parts there are.

\[
\frac{3}{5} \quad \text{numerator} \quad \text{denominator}
\]

\[
\frac{3}{5} \quad \text{of the line is shaded in (red).}
\]

3 out of 5 equal sections are shaded in (red).

\[
\frac{3}{5} \quad \text{of the container is full.}
\]

3 out of 5 equal sections are full.

\[
\frac{2}{5} \quad \text{of the container is not full.}
\]

\[
\frac{5}{5} \quad \text{of the line is not shaded in (blue).}
\]

5 out of 5 equal sections are not shaded in (blue).

\[
\frac{0}{5} \quad \text{of the line is shaded in (red).}
\]

\[
\frac{5}{5} \quad \text{of the container is full.}
\]

5 out of 5 equal sections are full.
1. Name the fraction of the line that is shaded in (red) or the fraction of the container that is full.

a)

b)

c)

d)

e)

f)

2. Draw a line or linking cube tower or container to show each fraction. What fraction does the other part of the line, tower or container show?

<table>
<thead>
<tr>
<th>Fraction to show</th>
<th>Picture of fraction</th>
<th>Other fraction shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\frac{4}{5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) $\frac{3}{10}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) $\frac{7}{8}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) $\frac{3}{5}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. a) Why isn’t $\frac{2}{3}$ of the line shaded in (red)?

![Line diagram]

b) Why isn’t $\frac{3}{4}$ of the tower shaded in (red)?

![Tower diagram]

c) Why isn’t $\frac{1}{2}$ of the container full?

![Container diagram]
4. Show each fraction in one of these ways:
 – as part of a line
 – as the full part of a container
 – as part of a tower.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\frac{1}{4}$</td>
<td>b) $\frac{2}{6}$</td>
<td>c) $\frac{3}{8}$</td>
</tr>
<tr>
<td>d) $\frac{2}{9}$</td>
<td>e) $\frac{11}{12}$</td>
<td></td>
</tr>
</tbody>
</table>
5. There are three containers that are the same size.

One container is $\frac{5}{6}$ full.

One is $\frac{9}{10}$ full.

One is $\frac{3}{4}$ full.

Shade the pictures to show how full each container is.

What do the pictures have in common?
Proper Fractions as Parts of a Set

Learning Goal

- representing fractions 1 or less using a set of objects of a given size as a whole.

Open Question

1 whole is 1 box of cookies.

If a box contains 6 cookies, then

3 cookies fill $\frac{1}{2}$ of a box.

1 cookie fills $\frac{1}{6}$ of a box.

Draw cookie pictures to represent each fraction. The box can have as many cookies in it as you want. The cookies do not have to be the same size or shape.

$$\frac{3}{6} \quad \frac{7}{10} \quad \frac{2}{5} \quad \frac{9}{12}$$

Decide how many cookies are in a box. Show each fraction under your picture.

- How are these fractions alike?

- How are they different?
A fraction can describe part of a set.

The **numerator** (top) tells how many items you are talking about.

The **denominator** (bottom) tells how many items are in the whole set.

\[
\frac{3}{4} \quad \text{numerator} \quad \text{denominator}
\]

There are 4 shapes; 3 are hearts and 1 is a square.

\[
\frac{3}{4} \quad \text{of the shapes are hearts.}
\]

\[
\frac{1}{4} \quad \text{of the shapes are squares.}
\]

There are 4 shapes; 4 are blue and 0 are white.

\[
\frac{4}{4} \quad \text{of the shapes are blue.}
\]

\[
\frac{0}{4} \quad \text{of the shapes are white.}
\]

1. Name the fraction of the number in the set that are hearts.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Decide how many items should be in 1 whole set to show the fraction in the first column. Write that number in the second column.

Draw a picture to show each fraction in the third column.

In the last column, write a different fraction that the picture shows.

<table>
<thead>
<tr>
<th>Fraction to show</th>
<th>Number in whole set</th>
<th>Picture of fraction</th>
<th>Other fraction shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\frac{4}{5})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) (\frac{3}{10})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) (\frac{7}{8})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) (\frac{3}{5})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Someone says that the first picture shows \(\frac{2}{5} \) but the second picture does not show \(\frac{2}{5} \).

What do you think? Why?
4. For each part, choose the number of items you think belong in 1 whole set. Using your number of items, draw a picture to show each fraction. Circle the part of the picture that shows the given fraction.

- a) \(\frac{2}{5} \)
- b) \(\frac{5}{8} \)
- c) \(\frac{4}{10} \)
- d) \(\frac{5}{6} \)
- e) \(\frac{1}{12} \)

5. Draw a fraction of the set that are hearts for each situation. Name the fraction.

 a) There are 6 shapes in the whole set.

 b) There are 2 hearts and 3 squares and other shapes in the set.

 c) There are 2 hearts and some other shapes in the set.

 d) The number of shapes in the whole set and the number of hearts are both more than 3.
Improper Fractions as Parts of Wholes

Learning Goal

• representing fractions greater than 1 using an area as a whole.

Open Question

Each fraction represents a part of a circle.

Draw the circle pictures for the fractions.

<table>
<thead>
<tr>
<th>8/3</th>
<th>10/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/5</td>
<td>22/8</td>
</tr>
</tbody>
</table>

• How are these four fractions alike?

• How are they different?
Think Sheet

We think of a fraction as being part of a whole.

But a fraction can represent the whole or even more than 1 whole.

If the numerator (top) of a fraction equals the denominator (bottom), the fraction shows 1 whole.

- 3 equal parts with 3 parts blue
 \[\frac{3}{3} = 1 \]

- 4 equal parts with 4 parts blue
 \[\frac{4}{4} = 1 \]

If the numerator is greater than the denominator, the fraction is worth more than 1.

- \(\frac{4}{3} \) is 4 one-thirds.
 \[\frac{4}{3} = \frac{3}{3} + \frac{1}{3} \]
 \[= 1\frac{1}{3} \]
 \(1\frac{1}{3} \) is the mixed number name for \(\frac{4}{3} \).

- \(\frac{7}{3} \) is 7 one-thirds.
 \[\frac{7}{3} = \frac{3}{3} + \frac{3}{3} + \frac{1}{3} \]
 \[= 2\frac{1}{3} \]
 \(2\frac{1}{3} \) is the mixed number name for \(\frac{7}{3} \).
1. Shade the pictures to show each improper fraction.

 a) \(\frac{3}{2} \)

 b) \(\frac{6}{4} \)

 c) \(\frac{19}{8} \)

 d) \(\frac{7}{4} \)

2. Use fraction circles or grid paper to help you. The first one is done for you.

<table>
<thead>
<tr>
<th>Improper fraction</th>
<th>Mixed number name or whole number name</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\frac{5}{5})</td>
<td>1</td>
</tr>
<tr>
<td>b) (\frac{7}{5})</td>
<td></td>
</tr>
<tr>
<td>c) (\frac{8}{3})</td>
<td></td>
</tr>
<tr>
<td>d) (\frac{5}{2})</td>
<td></td>
</tr>
<tr>
<td>e) (\frac{9}{3})</td>
<td></td>
</tr>
<tr>
<td>f) (\frac{7}{4})</td>
<td></td>
</tr>
</tbody>
</table>
3. $\frac{5}{3}$ is more than 1 whole but not quite 2 wholes. It is the whole number part of the mixed number $1\frac{2}{3}$, which equals $\frac{5}{3}$.

Complete the chart to tell how many wholes you can create when you model these fractions.

<table>
<thead>
<tr>
<th>Improper fraction</th>
<th>Whole number part of equivalent mixed number</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\frac{7}{2}$</td>
<td></td>
</tr>
<tr>
<td>b) $\frac{10}{3}$</td>
<td></td>
</tr>
<tr>
<td>c) $\frac{11}{4}$</td>
<td></td>
</tr>
<tr>
<td>d) $\frac{16}{3}$</td>
<td></td>
</tr>
<tr>
<td>e) $\frac{9}{3}$</td>
<td></td>
</tr>
<tr>
<td>f) $\frac{21}{6}$</td>
<td></td>
</tr>
</tbody>
</table>

4. Why might one person describe this fraction as $\frac{5}{6}$, and another as $\frac{5}{3}$? How do you decide which it is?

5. Name an improper fraction for each situation. Write the mixed number for it, too.
 a) It is worth more than 4, but less than 5.
 b) The numerator is 4 more than the denominator.
 c) The numerator is 4 times as much as the denominator.
 d) It is one of the numbers you would say if you counted like this:
 $\frac{2}{10}$, $\frac{4}{10}$, $\frac{6}{10}$, $\frac{8}{10}$, $\frac{10}{10}$, $\frac{12}{10}$,
 e) The sum of the numerator and denominator is 10.
Improper Fractions as Parts of Sets

Learning Goal

- representing fractions greater than 1 using a set of objects of a given size as a whole.

Open Question

1 whole is a box full of cookies.

If a box contains 6 cookies, then

- 3 cookies fill \(\frac{1}{2} \) of a box.
- 1 cookie fills \(\frac{1}{6} \) of a box.

Draw pictures of boxes of cookies to show these fractions. There might be one box that is not full. All the others should be full.

\[
\frac{22}{6} \quad \frac{19}{5} \quad \frac{28}{8} \quad \frac{34}{10}
\]

Show how many full boxes and what part of a not full box each fraction would be. Write it under your pictures.

- How are these fractions alike?

- How are they different?
We can use fractions to tell about parts of a set of objects.

A fraction can also represent a whole set or even more than 1 whole set.

If the numerator (top) of a fraction equals the denominator (bottom), the fraction shows 1 whole even if the items in the set are different.

3 items in a set of 3
\[
\frac{3}{3} = 1
\]

4 items in a set of 4
\[
\frac{4}{4} = 1
\]

Sometimes a whole has a certain number of items and you have more than that number. You can use a fraction greater than 1 to show what you have. The fraction you use is called an improper fraction.

Each muffin is \(\frac{1}{6}\) of a pan.

9 muffins is \(\frac{9}{6}\) pans.

\(\frac{9}{6}\) is also \(1\frac{3}{6}\).

\(1\frac{3}{6}\) is called a mixed number.

Each pencil is \(\frac{1}{10}\) of a cup of pencils.

27 pencils fill \(\frac{27}{10}\) cups.

\(\frac{27}{10}\) is also \(2\frac{7}{10}\).

\(2\frac{7}{10}\) is called a mixed number.
1. The number of objects in 1 whole set is given.

Draw a picture in the last column to show the fraction in the middle column.

<table>
<thead>
<tr>
<th>Number in 1 whole set (e.g., number of counters in a bag)</th>
<th>Fraction to show</th>
<th>Picture of fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 4</td>
<td>$\frac{9}{4}$</td>
<td></td>
</tr>
<tr>
<td>b) 6</td>
<td>$\frac{15}{6}$</td>
<td></td>
</tr>
<tr>
<td>c) 3</td>
<td>$\frac{8}{3}$</td>
<td></td>
</tr>
<tr>
<td>d) 6</td>
<td>$\frac{8}{6}$</td>
<td></td>
</tr>
</tbody>
</table>

2. Write the mixed number or whole number for the improper fraction.

<table>
<thead>
<tr>
<th>Improper fraction</th>
<th>Mixed number name or whole number name</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) $\frac{12}{8}$</td>
<td>$1\frac{4}{8}$</td>
</tr>
<tr>
<td>b) $\frac{11}{3}$</td>
<td></td>
</tr>
<tr>
<td>c) $\frac{18}{4}$</td>
<td></td>
</tr>
<tr>
<td>d) $\frac{11}{2}$</td>
<td></td>
</tr>
<tr>
<td>e) $\frac{12}{4}$</td>
<td></td>
</tr>
<tr>
<td>f) $\frac{19}{10}$</td>
<td></td>
</tr>
</tbody>
</table>
3. \(\frac{5}{2} \) of a set is more than 2 whole sets but not as much as 3 whole sets.

Read the improper fraction.

Decide how many items you think should be in 1 whole set. Write that number in the middle column.

Tell how many whole sets you can make when you model each fraction.

<table>
<thead>
<tr>
<th>Improper fraction</th>
<th>Number in one whole set</th>
<th>The number of whole number sets you can make</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) (\frac{9}{2})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) (\frac{15}{3})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) (\frac{19}{4})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) (\frac{23}{10})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) (\frac{16}{10})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) (\frac{25}{3})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Why might one person describe the fraction of the hearts that is blue (shaded) as \(\frac{6}{8} \), but someone else might say \(\frac{6}{4} \)?

How do you decide which it is?
5. Describe an improper fraction for each situation. Write the mixed number if it is not already given.

a) There are $3 \frac{1}{2}$ packages.

b) You have more than 3 packages with 6 items in each, but less than 4 packages.

c) There are 10 cookies altogether, but they fill more than 2 boxes.

d) It is one of the numbers you would say when you count like this: \(\frac{2}{8}, \frac{4}{8}, \ldots \)
Fraction Circles (1)
Fraction Circles (2)
Fraction Circles (3)