TRIGONOMETRY RAFT: CHOOSE YOUR OWN ADVENTURE! (page 1 of 3)

<u>R</u> ole	<u>A</u> udience	<u>F</u> ormat	<u>T</u> opic								
. Metal Fabricator	Shop Supervisor	Physical model	This drawing shows the way that metal supports will have to be constructed to frame the outside wall in a new building. Calculate the length of the diagonal piece of metal and all of the unknown angles. Create a scale model of the wall and support beams, showing all dimensions and angles.								
2. BMX Rider	Builder	Drawing with measurements	A new motocross course is being built and the starting ramp is being designed. A higher and longer ramp gives riders more speed to start the race. Draw a ramp that would have a length of at least 15 metres with an angle of elevation between 30° and 65°. Include all measurements on your drawing.								
s. Pipe Fitter	Co-Worker	Oral description of solution with drawing and calculations	A pipe offset is pictured to the right: The length of pipe C is 24" and the length of measurement A is 13.75". How can you find the angle of the joints at the ends of pipe C?								

TRIGONOMETRY RAFT: CHOOSE YOUR OWN ADVENTURE! (page 2 of 3)

	<u>R</u> ole	<u>A</u> udience	<u>F</u> ormat	<u>T</u> opic							
4.	Salesperson	Customer	Oral explanation with drawing and calculations	A customer comes into a flooring store looking for enough carpet to cover his basement stairs. He knows that the stairs rise at a 35° angle and that the staircase is 14 feet long. The stairs are 3 feet wide. Here is the drawing that he brought into the store to show the salesman: What is the total amount of carpeting required to cover the stairs? What assumption must you make in order to determine the amount of carpeting?							
5.	Airplane Navigator	Pilot	Technical description	An airplane is 1,500 m in the air. The Navigator sees that the airport is at a 20° angle of depression. How far away from the airport is the airplane?							

TRIGONOMETRY RAFT: CHOOSE YOUR OWN ADVENTURE! (page 3 of 3)

	<u>R</u> ole	<u>A</u> udience	<u>F</u> ormat	<u>T</u> opic							
6.	Car Customizer	Machinist	Drawing	Create a drawing of a design for a new tire rim that uses right triangles as a central theme. The drawing must include the side lengths and angles of at least one triangle. The most common tire rim diameter is 15 inches.							
7.	Surveyor	Camp Director	Written letter	Camp Mathisfun wants to build a footbridge across a river. The surveyor has created this drawing based on her measurements. Complete a letter to the camp director indicating the length of the footbridge and how it was determined. 400 metres							

CLASS ASSESSMENT CHECKLIST

																	7	7			<i>T</i>
Categories/Math	nematical Processes/Criteria										/ /	/ /	//	/ /			\perp	\perp	\perp		_/
Thinking																					
рп	The student:																				
Reflecting	Effectively judges the reasonableness of results																				
Communication																					
םם	The student:																				
Communicating	Clearly explains and logically justifies solutions orally, visually and/or in writing																				
Application																					
ler .	The student:																				
Selecting Computational Strategies	Selects appropriate computational strategies to solve for unknown sides in right triangles																				
D'	The student:					•						,									
Connecting	Describes relevant examples of problem solving using trigonometry in an occupation																				

REFLECTION EXIT CARD

Reflection

Name:

What occupation were you focusing on in today's activity?

What does trigonometry have to do with the occupation that you looked at?

Solve for side X on the following triangle. Show your work.

X 3m 60°

Solve for angle A on the following triangle. Show your work.

