Digital Papers Logo digital papers Home Page


Research Story

Students consistently demonstrated a broad range of conceptions of fractions and were persistent in using this prior knowledge. Although many students held misconceptions, they simultaneously held correct understandings about number in general and fractions in particular. When teachers had a clear understanding of student understanding of fractions, their instructional decisions were more precise.

Teams explored appropriate use of a variety of manipulatives and representations. Students deepened their understanding, using manipulatives and representations as a site for problem solving to:

  • further and refine their thinking;
  • confirm/refute the validity of other representations;
  • privilege representations other than numeric/symbolic;
  • connect different interpretations of fractions (i.e., part-whole as continuous, part-whole as discrete, part-part, operator, quotient, linear measure), and;
  • communicate their thinking.

Fraction ideas and learning >>

Fractions(Content) Student Learning Instructional Decisions Teacher Professional Learning